p-Catalan Numbers and Squarefree Binomial Coefficients

نویسنده

  • Pantelimon Stănică
چکیده

In this paper we consider the generalized Catalan numbers F (s, n) = 1 (s−1)n+1 ( sn n ) , which we call s-Catalan numbers. For p prime, we find all positive integers n such that p divides F (p, n), and also determine all distinct residues of F (p, n) (mod p), q ≥ 1. As a byproduct we settle a question of Hough and the late Simion on the divisibility of the 4-Catalan numbers by 4. In the second part of the paper we prove that if p ≤ 99999, then ( pn+1 n ) is not squarefree for n ≥ τ1(p) sufficiently large (τ1(p) computable). Moreover, using the results of the first part, we find n < τ1(p) (in base p), for which ( pn+1 n ) may be squarefree. As consequences, we obtain that ( 4n+1 n ) is squarefree only for n = 1, 3, 45, and ( 9n+1 n ) is squarefree only for n = 1, 4, 10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-Catalan Numbers and Squarefree Binomial Coefficients

In this paper we consider the generalized Catalan numbers F (s, n) = 1 (s−1)n+1 ( sn n ) , which we call s-Catalan numbers. We find all natural numbers n such that for p prime, p divides F (p, n), q ≥ 1 and all distinct residues of F (p, n) (mod p), q = 1, 2. As a byproduct we settle a question of Hough and the late Simion on the divisibility of the 4-Catalan numbers by 4. We also prove that ( ...

متن کامل

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers

We establish various generating functions for sequences associated with central binomial coefficients, Catalan numbers and harmonic numbers. In terms of these generating functions, we obtain a large variety of interesting series. Our approach is based on manipulating the well-known generating function of the Catalan numbers.

متن کامل

Jacobi Polynomials and Congruences Involving Some Higher-Order Catalan Numbers and Binomial Coefficients

In this paper, we study congruences on sums of products of binomial coefficients that can be proved by using properties of the Jacobi polynomials. We give special attention to polynomial congruences containing Catalan numbers, second-order Catalan numbers, the sequence Sn = ( 3n)( 3n 2n) 2( n )(2n+1) , and the binomial coefficients ( 3n n )

متن کامل

Se p 20 07 Preprint , arXiv : 0709 . 1665 CONGRUENCES INVOLVING CATALAN NUMBERS

In this paper we establish some new congruences involving Catalan numbers as well as central binomial coefficients. Let p > 3 be a prime. We show that

متن کامل

On Divisibility Properties of Some Differences of the Central Binomial Coefficients and Catalan Numbers

We discuss divisibility properties of some differences of the central binomial coefficients and Catalan numbers. The main tool is the application of various congruences modulo high prime powers for binomial coefficients combined with some recurrence relevant to these combinatorial quantities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002